13*13 Primzahlen von links nach rechts

 

a) Einleitung

b) 9 Zahlen des inneren Quadrats

c) Mittelpunkt + 6 Quadratrahmen

a) Einleitung

Die Ordnungen der 169 Primzahlen von 1-1000 in 6 konzentrischen Quadraten wecken das Interesse, ob Zahlenbeziehungen auch in iner Anordnung von jeweils 13 Primzahlen je Zeile erkennbar sind. Ich beschränke mich auf zwei Ergebnisse, die mir besonders bedeutsam erscheinen:

1

2

3

5

7

11

13

17

19

23

29

31

37

198

41

43

47

53

59

61

67

71

73

79

83

89

97

863

101

103

107

109

113

127

131

137

139

149

151

157

163

1687

167

173

179

181

191

193

197

199

211

223

227

229

233

2603

239

241

251

257

263

269

271

277

281

283

293

307

311

3543

313

317

331

337

347

349

353

359

367

373

379

383

389

4597

397

401

409

419

421

431

433

439

443

449

457

461

463

5623

467

479

487

491

499

503

509

521

523

541

547

557

563

6687

569

571

577

587

593

599

601

607

613

617

619

631

641

7825

643

647

653

659

661

673

677

683

691

701

709

719

727

8843

733

739

743

751

757

761

769

773

787

797

809

811

821

10051

823

827

829

839

853

857

859

863

877

881

883

887

907

11185

911

919

929

937

941

947

953

967

971

977

983

991

997

12423

5405

5462

5545

5625

5705

5781

5833

5913

5995

6093

6169

6253

6349

76128

 

 

 

 

 

 

3897

 

6974

10494

14228

18106

22429

76128

Die Gesamtsumme beträgt 76128 = 96*13*61 = Faktorenwert (FW) 87. Die unterste Zeile der Tabelle zeigt die Summen von 6 Quadratrahmen, wobei die Mittelpunktzahl 433 dem inneren Quadrat zugeordnet wird.

b) 9 Zahlen des inneren Quadrats

1.      Das auffallendste Ergebnis sind die 8 Primzahlen des inneren Quadratrahmens, die das Achtfache der Mittelpunktszahl 433 betragen:

Die Summen von 4 gegenüberstehenden Zahlenpaaren auf den Mittelachsen und den Diagonalachsen betragen jeweils 870+862 = 1732 = 4*433.

Die Einzelziffern der Zahl 433 haben mehrere Bedeutungen:

·     Eine Skala von 10 Punkten begrenzt 3*3 Maßeinheiten:

·     Die 10 Punkte der Tetraktys lassen sich aufteilen in 4 hexagonale gegenüberstehende Kreislinienpunkte, 3 hexagonale Durchmesserpunkte und 3 Eckpunkte:

Das Muster von 10 Punkten und 3*3 Maßeinheiten läßt sich auf den drei Tetraktysseiten nachvollziehen, wobei der 10. Punkt zum ersten zurückkehrt:

·     Die Fläche eines gleichseitigen Dreiecks beträgt 1/43 = 0,1732/4 = 0,433. Läßt man die Kommastellen außer Acht, steht 433 für ein gleichseitiges Dreieck. Das gleichseitige Dreieck versinnbildlicht in vollkommener Weise die Wesensgleichheit der drei göttlichen Personen: Sie sind durch drei Seiten untereinander verbunden und durch die gemeinsame Fläche geeint.

9 gleichseitige Dreiecke befinden sich in der Tetraktys:

2.       Die Dreiheit der Personen zeigt sich auch in drei geometrischen Figuren von jeder Ecke der Tetraktys, die in stilisierter Form die Gestalt eines Fisches haben. Jede "Fischfigur" besteht aus drei Dreiecken. Die Summen von 3*3 Zahlen und ihre FW sind:

 

 

 

 

 

Fakt.

FW

sm

 

li.unt.

433

439

431

1303

1303

1303

 

 

Mitte

349

359

503

1211

7*173

180

 

 

re.unt.

521

509

353

1383

3*461

464

 

 

 

1303

1307

1287

3897

3*11*59

1947

5844

494

FW

 

 

 

439

 

73

512

18

sm

5844 = 12*487; 512 = 29 >18

512

Ungewöhnlich ist das sich wiederholende Additionsergebnis 512. Die 9. Potenz von 2 kann als 9*2 oder 2*9 gelesen werden. Im ersteren Fall werden die 9 Punkte und 9 Linien der drei Tetraktysseiten in Zweierschritt erfaßt, in letzerem zwei DR-Zickzacklinien, von denen jede aus 9 Elementen besteht.

Die Fischfigur stellt eine verkürzte DR dar. Der DR-Rahmen aus 15 Elementen umschließt 6 Binnenelemente, die entsprechenden Zahlen für die Fischfigur sind 12 und 5. Betrachtet man 12 als Einzelziffern, geben 1+2 hexagonale Radialelemente und 5 Radialelemente beider Kreise das Kreisflächenverhältnis 1:3 wieder:

3.       Beachtung verdient die ZW/FW-Verrechnung der Umkehrzahlen 512 und 125:

 

 

 

sm

FW

sm

FW

Zahl

512

125

637

27

 

 

FW

18

15

33

14

 

 

sm

 

 

670

41

711

85

FW

 

 

74

41

115

28

sm

 

 

 

 

 

113

637 = 7*7*13; 711 = 79*9

Die erste 7 ist auf den hexagonalen Kreis zu beziehen, die zweite 7 auf den äußeren Kreis, der die zweite Verwendung des Mittelpunktes benötigt, zu den 13 Punkten des Tetraktyskreises ist der Kreisbogen hinzuzudenken bzw. der unsichtbare zweite Mittelpunkt bleibt außer Acht. Den drei Punktezahlen entspricht das Kreisflächenverhältnis 1:3:3 und die Punktestruktur der DR.

113 kennzeichnet die Ineinanderfügung einer Raute aus 11 und eines sanduhrförmigen Doppeldreiecks aus 13 Elementen. Beide zusammen bilden die Fischfigur aus 17 Elementen. 113 ist auch die Numerierungssumme von vier Quadratachsen:

Das FW-Verhältnis 18:15 = 3*(6:5) ist auf den Doppelaspekt von 2*3 Radialelementen und 5 Durchmesserelementen einer Kreisachse und auf 3 Hexagonalachsen zu beziehen:

Auch eine Rautenfigur ist aus 6+5 Elementen zusammensetzbar:

Als Ausgangsfigur der Fischfigur ist die Raute in der Tetraktys dreimal vorhanden.

4.      Zwischen der Zahl 1000, den Zahlen des inneren Quadrats und der Tetraktys besteht ein innerer Zusammenhang: Der Faktorenwert (FW) der Zahl 10 = 2*5 beträgt 7 und entsprechend der FS von 10³ 3*7. Die Zahlen 3 und 7 haben hinsichtlich der Tetraktys eine dreifache Bedeutung:

·     3 Eckpunkte stellen die Erweiterung der 7 hexagonalen Punkte dar.

·     Jede der 3 Tetraktysseiten besteht aus 4 Punkten und 3 Linien, also aus 7 Elementen.

·     Die ganze Tetraktys besteht aus 37 Elementen: aus 10 Punkten, 18 Linien und 9 Dreiecksflächen.

5.      Die oberste Primzahl 349 ist zu verstehen als 3*4 Punkte der drei Tetraktysseiten + 9 Linien. Ihre Umkehrung 439 bezieht sich auf eine andere Figur des Tetraktyssterns, auf die Doppelraute (DR), die entsprechend den drei Doppeldreiecken des Hexagons ebenfalls dreifach auftritt:

Ein Achsenkreuz aus zwei DR läßt sich zur dreidimensionalen Figur des Oktaeders zusammenfügen. Zwei sich kreuzenden Durchmesserlinien umschließen 2*2 Dreiecksflächen, die jeweils durch eine Querlinie getrennt sind. Jede DR ist gekennzeichnet durch 4 Querpunkte und 3 Längspunkte. Jeder Querpunkt bildet die Mitte zweier dachförmiger Linien. Jede DR enthält demnach 4*3 Dachelemente und 9 Längselemente, zusammen 21 Elemente.

Die Zahl 439 ist hier deshalb so bedeutsam, weil sie der FW von 9*433 ist.

6.      Es wurden einmal die Einzelziffern von 433 und einmal 3*4 (+9) von 349 an die drei Tetraktysseiten angelegt. Es handelt sich um die Konkurrenzsituation der Zahlen 10 und 12. Sie ist auch abzulesen an den Endziffern der zweimal zwei Additionspaare 431+439, 349+521 und 353+509, 359+503. Grund hierfür ist, daß das DR-Kreuz eine Kombination aus einem zweiachsigen und einem dreiachsigen Achsenkreuz darstellt:

5 Achsen enthalten jeweils 2 Maßeinheiten. 10 Maßeinheiten werden durch 12 Punkte begrenzt. Die Zahl 12 ist für das Dezimalsystem darin bedeutsam, in der Gleichung 12 = 3*4 die ersten vier Zahlen enthalten sind, die 10 ergeben.

7.      Die Quersummen der 4 Additionspaare sind 2*24 und 2*25. Sie können die Elemente von zwei Tetraktyssterne darstellen, die jeweils aus 24 Linien und 13 Punkten + 12 Dreiecksflächen bestehen. Die Gesamtsumme 98 wird komplettiert durch die Quersumme 10 der Mittelpunktszahl 433 zur neuen Gesamtsumme 108, die in ihrem Produkt 12*9 einmal mehr die 12 Punkte und 9 Linien der drei Tetraktysseite wiedergibt.

2*24 = 48 und 2*25 = 50 können auch so gedeutet werden, daß im ersten Fall der Mittelpunkt unberücksichtigt bleibt und im zweiten Fall für die hexagonale Erweiterung ein zweiter Mittelpunkt hinzugerechnet wird, um einen zweiten Kreisbogen ziehen zu können. Im ersten Fall bedeuten 24:24 Elemente das Kreisflächenverhältnis 1:2, im zweiten das Flächenverhältnis 1:3.

8.      Die 9 Dreiecke der Tetraktys erweitern sich auf drei Ebenen in der Abfolge 1, 3, 5. Sie können einzeln und in stufenförmiger Zusammensetzung 1, 4 und 9 gesehen werden. Es werden so 9+14 = 23 Dreiecke erfaßt. Erstaunlich ist, daß die Zahlen in 3, 5 und 4 Dreiecken jeweils eine Durchschnittssumme ergeben. Es kommen so zwei Additionsreihen zustande:

1.R.

 

 

 

 

 

 

ø

Faktoren

3

353

359

431

 

 

1143

381

3*127

5

433

439

503

509

521

2405

481

13*37

4

349

353

359

431

 

1492

373

373

 

 

 

 

 

 

5040

1235

5*13*19

Die Faktoren 127und 37 weisen auf die Tetraktys, 373 auf die 13 Punkte des Tetraktyssterns hin. Im SATOR-Quadrat entspricht den Faktoren 13, 5, 19 das Wort NETer webt. Der Durchschnitt aller 12 Zahlen beträgt 420.

Die Durchschnittssummen der zweiten Reihe betragen 349+349+433 = 1131 = 3*377 = 3*13*29.

Die Durchschnittssummen beider Reihen sind durch 13 teilbar. Ihr Verhältnis beträgt 13*(95:87) = 13*182 = 13*13*14 = FW 35 = 5*7.

Die 13 Punkte des Tetraktyssterns geben 3 Kreisflächeneinheiten des ganzen äußeren Kreises wieder. Der Mittelpunkt für den äußeren Kreis bleibt dabei unberücksichtigt. Dies ist der Fall bei der Zahl 14 = 7+7. Die erste 7 repräsentiert 1 hexagonale Kreisflächeneinheit, die zweiten 3 Flächeneinheiten des äußeren Kreises, zusammen 4 Flächeneinheiten. Durch die Produktanordnung 14*13*13 kommt man so in dreistelliger Zusammensetzung zur Mittelpunktszahl 433.

Der FW 35 gibt in zweifacher Weise das Kreisflächenverhältnis 1:3 wieder:

·     Die Faktoren 5*7 sind auf 5 hexagonale und 2 Erweiterungspunkte der DR beziehbar. 5:(5+2) Punkten der DR entspricht das Kreisflächenverhältnis 1:3:

·     Die Einzelziffern 3 und 5 sind Radialelemente einer DR-Zickzacklinie:

3:(3+2) Radialelementen entspricht ebenfalls das Kreisflächenverhältnis 1:3.

c) Mittelpunkt + 6 Quadratrahmen

1.      Ein Zahlenverhältnis kommt zustande, wenn man die Mittelpunktszahl 433 und die Summen von 6 Quadratrahmen nach ungerader und gerader Stellung addiert:

 

MP

QR1

QR2

QR3

QR4

QR5

QR6

 

Faktoren

unger.

433

 

6974

 

14228

 

22429

44064

96* 3* 3* 3* 17 = 96*459 = FW 39

gerade

 

3464

 

10494

 

18106

 

32064

96*2*167= 96*334 > FW 182

44064:32064 = 96*(459:334) = 96*793; 459-334 = 125; 96*125 = 12000 >FW 13+15 = 28

Die auffällige Differenzsumme 12000 ist in Verbindung mit der Zahl 1000 zu sehen, deren FW 21 auf die drei Tetraktysseiten hinwies. Die Tetraktys kann erweitert werden zu einem Quadrat, dessen Seiten ebenfalls aus 4 Punkten und 3 Linien besteht:

Die Ergebnisse sind nun im einzelnen auszuwerten:

2.      Die Zahl 96, gemeinsamer Teiler der beiden Summen, kann mehrere Bedeutungen haben, real oder in Zusammensetzung einstelliger Zahlen:

·     Ein Oktaeder setzt sich zusammen entweder aus 4 sanduhrförmigen Doppeldreiecken von je 13 Elementen oder 4 Rauten von je 11 Elementen, aus einer Kombination beider oder aus beiden zusammen. Es ergeben sich so vier Summen: 52, 44; 48; 96.

·     Der DR-Rahmen besteht aus 15 Elementen, 9 gehören dem hexagonalen, 6 dem Erweiterungsbereich an:

·     Eine DR-Zickzacklinie enthält 5 Durchmesserelemente und zweimal 5 Radialelemente, jeweils 3 Punkte und 2 Linien, in zweistelliger Zusammensetzung ergibt sich 3*32 = 96:

·     Die FW von 9+6 sind 6+5 = 15+11 = 26. Dies ergibt eine Beziehung zum Oktaeder, der aus 26 Oberflächenelementen besteht.

·     Die FW der beiden Umkehrungen 96 und 69 sind 13+26 = 39 = 3*13. Die Einzelziffern des Produkts geben die Punktestruktur der DR wieder.

3.      Aus dem Produktausdruck 96*125 ergab sich die FW-Zusammensetzung 13+15 = 28. Die beiden FW haben Bezug zu den drei hexagonalen Achsen:

In der ersten Grafik wird für jede Achse ein Mittelpunkt gerechnet, in der zweiten nur einer.

Dieser hexagonale Doppelaspekt ist auch in den beiden Summenfaktoren 334 (Umkehrzahl zu 433!) und 559 erkennbar. Ihre FW sind 169+26 = 13*(13+2). Die Zahl 2 kann hier als zwei zusätzliche Mittelpunkte gedeutet werden.

4.      Fügt man den FW der beiden Summenfaktoren den FW 13 des gemeinsamen Teilers 96 hinzu, ergibt sich das Verhältnis 182:39 = 13*(14:3) = 221 = 13*17. Bei der Erweiterung der 3 hexagonalen Doppeldreiecken zum Tetraktysstern, kommt durch Hinzufügung eines Dreiecks auf beiden Seiten eine "Fischfigur" aus 17 Elementen zustande:

Die Zahl 3 des Klammerausdrucks ist auf die drei Dreiecksflächen der Fischfigur beziehbar. Sie sind religiöses Symbol für die drei göttlichen Personen. Die Einzelziffern der Zahl 221 lassen sich etwa so darstellen:

Die Figur enthält 2 Querlinien – im Hexagon Segmentlinien – und 2+1 Dreiecksfläche. Die Fischfigur vereinigt in sich das sanduhrförmige Doppeldreieck aus 13 und die Raute aus 11 Elementen. Dazu passen die Faktoren 11*13 der Zahl 143.

Die Verrechnung der Teilsummen mit der Gesamtsumme führt wiederum zu einem durch 13 teilbaren Ergebnis:

 

 

 

sm

FW

ZS

44064

32064

76128

87

FW

189

39

221

30

sm

 

 

 

117

117 = 9*13

Die Faktoren 9*13 weisen wiederum auf die beiden zwei- und dreiachsigen Figuren hin, die 4+6 = 10 Maßeinheiten enthalten. Die Einzelziffern geben auch die 13 Punkte des Tetraktyssterns wieder: 9 Punkte eines Tetraktysrahmens, den Mittelpunkt + 3 weitere Eckpunkte der Erweiterung.

Erstellt: Oktober 2018

Inhalt II