169 Primzahlen in 6 konzentrischen Quadraten

 

Primzahlen 1-1000 in 6 konzentrischen Quadraten

a) Einleitung

b) Horizontale Hälften

c) Begrenzende und umgrenzte Zahlengruppen

d) Erweiterung von 169 auf 177 Zahlen

e) Dreiheit und Einheit der göttlichen Personen

a) Einleitung

1.      Wie kann man den unbegrenzten Zahlenmengen in geordneten Vorstellungen Herr werden? Eine Möglichkeit besteht in ihrer spiralenförmigen Anordnung auf Punkten konzentrischer Quadrate. Jeder quadratischer Umlauf endet mit einer Quadratzahl, angefangen von und nachfolgend im Abstand von 2 (5², 7² usw.).

Nach 6 quadratischen Umläufen erreicht man 13² = 169. Ebenfalls 169 Primzahlen befinden sich zwischen 1 und 1000. Auch ihre Gesamtsumme ist durch 13 teilbar: 76128 = 96*13*61 = Faktorenwert (FW) 87. Man kann also die 169 Primzahlen in 6 konzentrischen Quadraten aneinanderreihen.

2.      Welche Ordnungen in dieser Vorgehensweise zu erwarten sind, dafür habe ich eine Untersuchung über die regulären Zahlen von 1-169 vorangestellt.

Wenn Ordnungen zu erkennen sind, dann bestehen sie hauptsächlich in Zahlenverhältnissen, die aus symmetrischen Strukturen ablesbar sind. Sie haben ontologischen Rang, insofern ein innerer Zusammenhang zwischen dem Dezimalsystem und den genannten quadratischen Erweiterungsmöglichkeiten besteht. Eingestiftete Ordnungen sind als Werk göttlicher Weisheit zu verstehen.

3.      Ordnungen zeigen sich in Zahlenverhältnissen zwischen symmetrischen Teilbereichen und der Gesamtsumme. Es gilt daher, in einzelnen Strukturteilen Faktoren der Gesamtsumme zu finden, insbesondere den Faktor 13, der ja in der Anzahl der 169 Primzahlen selbst enthalten ist.

b) Horizontale Hälften

1.      Bei einer ungeraden Zahl von Elementen übernimmt eine Hälfte die symmetrische Mitte, die zweite Hälfte lehnt sich an die Symmetrie der ersten Hälfte an. Die symmetrische Mitte kann eine ganze Zeile sein, hier also 13 Zahlen, oder der Symmetriemittelpunkt als einzelne Zahl 1. In der vorliegenden Anordnung der 169 Primzahlen teilt der Faktor 13 das Quadrat horizontal zweimal gemäß den beiden genannten Möglichkeiten:

743

751

757

761

769

773

787

797

809

811

821

823

827

10229

739

463

467

479

487

491

499

503

509

521

523

541

829

7051

733

461

263

269

271

277

281

283

293

307

311

547

839

5135

727

457

257

113

127

131

137

139

149

151

313

557

853

4111

719

449

251

109

37

41

43

47

53

157

317

563

857

3643

709

443

241

107

31

3

5

7

59

163

331

569

859

3527

701

439

239

103

29

2

1

11

61

167

337

571

863

3524

691

433

233

101

23

19

17

13

67

173

347

577

877

3571

683

431

229

97

89

83

79

73

71

179

349

587

881

3831

677

421

227

223

211

199

197

193

191

181

353

593

883

4549

673

419

409

401

397

389

383

379

373

367

359

599

887

6035

661

659

653

647

643

641

631

619

617

613

607

601

907

8499

997

991

983

977

971

967

953

947

941

937

929

919

911

12423

9453

6817

5209

4387

4085

4016

4013

4011

4193

4727

5897

8047

11273

76128

Das Summenverhältnis der oberen 6 zu den unteren 7 Zeilen ist 33696:42432 = 96*13*(27:34) = FW (13+13)+(9+19) = 54. Wir finden in diesem Verhältnisausdruck alle Hinweise auf die Elemente des Oktaeders, der aus einem Doppelrautenkreuz zusammengefügt werden kann: Die Zahl 96 setzt sich zusammen aus 4*(11+13), den Elementen zweier geometrischer Figuren, die wechselseitig die Oberfläche des Oktaeders abdecken. Der FW von 96 ist 13, und aus 26 Außenelementen besteht der Oktaeder; fügt man das Volumen hinzu, sind es 27 Elemente. Aus jeweils 9+8 = 17 Elementen bestehen zwei Oktaederhälften, aus 2*27 Elementen der Tetraktysstern mit seinen beiden konzentrischen Kreisen. Den Faktor 61 kann man als 6 Oktaederecken und Volumen deuten.

Die oberen 6 Zeilen enthalten 78 Zahlen, das bedeutet den Durchschnittswert 432 je Zahl.

2.      Bei der zweiten Aufteilung gehört die Symmetrieachse mit Ausnahme der 1 des Mittelpunktes zur oberen Hälfte. Das Zahlenverhältnis ist nun 37219:38909 mit den Faktoren 7*13*409 = FW 429 = 3*11*13 und 13*41*73 = FW 127, zusammen 556 = 4*139 = 143 = 11*13. Der Abstand zwischen beiden Summen beträgt 1690, das Zehnfache der 169 Zahlen.

Die Einzelziffern der Faktorensumme (FS) 556 zeigen die Symmetriemitte der Zahlen 1-9 und 1-10. In zwei konzentrischen Kreisen besteht der Durchmesser aus 9 Elementen und die zwei Radialhälften aus 2*5 Elementen:

Die Zahlen 9 und 10 sind unter diesem Gesichtspunkte konstitutiv für das Dezimalsystem. Da der Faktor 139 noch mehrmals auftritt, soll hier auf diese Zahl eingegangen werden. Die Einzelziffern stimmen mit dedr Aufteilung der 13 Punkte des Hexagramms überein:

In der Aufteilung 13+9 weist die Zahl 139 auf zwei Achsenkreuze hin, die 6+4 = 10 Maßeinheiten enthalten:

Der Oktaeder setzt sich aus beiden Achsenkreuzen zusammen: Zwei Doppelrauten (DR) gehen auf die drei Achsen des Hexagons zurück, das Achsenkreuz aus zwei Doppelrauten vertritt das Prinzip der Zweiachsigkeit.

Die Faktoren 11 und 13 beziehen sich wiederum auf die beiden geometrischen Figuren, aus denen der Oktaeder zusammengesetzt ist.

3.      Die obere und untere Hälfte besteht nun in doppelter Zählung aus 78+90 = 168 und 91+79 = 170 Zahlen. Die FW der vier Zahlen sind wiederum durch 13 teilbar: 18+13+20+79 = 130. Das FS:ZS-Verhältnis beträgt demnach 26*(5:13).

4.      Ein weiteres durch 13 teilbares Zahlenverhältnis findet sich in vertikaler Anordnung: 7 konzentrische innere Reihen ergeben zu den zweimal 3 äußeren Reihen das Verhältnis 29432:46696 = 6*13*(283:449) = FW 770.

c) Begrenzende und umgrenzte Zahlengruppen

1.      Eine wichtige Rolle spielen die vier Achsen, die aus 8*6+1 = 49 Zahlen bestehen und in 8 Achsenarme (A) und den Mittelpunkt einzuteilen sind:

1622

1752

1890

5264

1513

1

2010

3524

2396

2260

2136

6792

5531

4013

6036

15580

15580 = 20*19*41 >FW 69

5 Achsenarme und der Mittelpunkt sind jeweils als eine Hälfte anzusehen. Die Summen der oberen Hälfte und der rechten Hälfte sind jeweils durch 13 teilbar:

 

 

 

sm

Faktoren

FW

sm

FW

ob.

5264

3524

8788

4*13³

43

 

 

re.

4013

6036

10049

13*773

786

 

 

sm

63*13*23

18837

 

 

 

 

FW

 

 

49

 

829

878

441

441 = 21*21

Der untere linke Achsenarm mit der Summe 2396 bleibt als einziger unberücksichtigt.

Die Zahlen keines Achsenarmes – mit und ohne Mittelpunkt – sind durch 13 teilbar.

2.      Ein Achsenarm besteht – ohne Mittelpunkt – aus 6 Zahlen. Die 8 Achsenarme begrenzen 8 gleichseitig-rechtwinklige Felder aus 15 Zahlen, die sich von 1-5 aufbauen:

Die Summen dieser Dreiecksfelder (F) sind:

 

links

sm

rechts

sm

GS

oben

6433

6851

13284

7335

7813

15148

28432

unten

5999

9153

15152

8705

8259

16964

32116

 

12432

16004

28436

16040

16072

32112

60584

60584 = 8*7573; 6851 = 17*13*31; 7813 = 13*601

Die vier Gesamtsummen sind jeweils durch 4 teilbar, die Differenz von je zwei horizontalen und vertikalen Summen ist jeweils 4.

Zwei Ergebnisse sind durch 13 teilbar. Ihre Summe hat mehrere Faktoren mit den Faktoren der Gesamtsumme gemeinsam: 14664 = 24*13*47. Bemerkenswert an dem Ergebnis ist, daß die Differenz zu 76128 aus denselben Ziffern besteht: 14664:61464 = 312*(47:197) = 312*244.

3.      Da die 8 Achsenarme die Dreiecksfelder umgrenzen, möchte man annehmen, daß die Verbindung beider zu Summen führen, die durch 13 teilbar sind. Dies ist in erstaunlicher Variabilität der Fall. Zuerst soll die obere Hälfte betrachtet werden:

Die Grafik veranschaulicht vier Zahleneinheiten. Die linke besteht aus zwei Achsenarmen und einem Feld. Keine der drei Komponenten ist durch 3 teilbar, aber alle drei zusammen. Rechts befindet sich die symmetrische Entsprechung. Hier sind das Zahlenfeld (F) und beide Achsenarmen zusammen jeweils durch 13 teilbar.

Die anderen beiden Zahleneinheiten sind durch die zwei Außenfiguren vordefiniert. Links neben der rechten Figur bildet das Zahlenfeld und der vertikale Achsenarm eine Einheit. Es bleibt das einzelne durch 13 teilbare Zahlenfeld links neben der Vertikalachse übrig. Es bildet mit der linken Zahlenfigur ein Rechteck von 6 horizontalen und 7 vertikalen Zahlen.

Die Summen der vier Einheiten von links nach rechts sind:

 

A1

A2

sm

F

GS

 

 

 

1

1513

1622

3135

6433

9568

13*32*23

46

 

2

 

 

 

6851

6851

13*17*31

61

 

3

1752

 

1752

7335

9087

3*13*233

248

8*31

4

2010

1890

3900

7813

11713

13*17*53

83

 

 

 

 

8787

28432

37219

7*13*409

438

6*73

Von der Gesamtsumme aller 169 Primzahlen lassen sich die erste Summe und die zweite+vierte Summe abziehen und Zahlenverhältnisse bilden: 76128-9568 = 66560; 9568:66560 = 32*13*(23:160); 6851+11713 = 18564; 76128-18564 = 57564; 18564:57564 = 12*13*(119:369) = 156*8*61.

Von Interesse ist die ZW/FW-Verrechnung:

 

ZS

FS

sm

FW

sm

FW

 

37219

438

37657

37657

 

 

FW

429

78

507

29

 

 

sm

429:78 = 39*(11:2)

38164

37686

75850

90

FW

 

 

87

587

674

339

438 = 6*73; 429 = 3*11*13; 507 = 3*13²

429

Die Faktorenwertverrechnung beginnt mit 429 und führt dahin zurück. Die beiden geometrischen Figuren aus 13 und 11 Elementen finden sich dreimal in der Tetraktys.

In den Summen 3900 und 7813 stecken 13 Punkte des Hexagramms und 10 Punkte der Tetraktys, wenn man sie in zweistellige Zahlen aufteilt: 13*(3+6+1); die Punkte der Tetraktys sind aufgeteilt in 3 Eckpunkte, 6 Kreislinienpunkte und den Mittelpunkt.

d) Erweiterung von 169 auf 177 Zahlen

1.      In der unteren Quadrathälfte sind drei gleichartige und zusammenhängende Zahleneinheiten zu erkennen:

Die drei Zahleneinheiten vermitteln den Eindruck einer Drehung im Uhrzeigersinn, die der Anordnung der Zahlen selbst entspricht. Das rechte Zahlendreieck lehnt sich an die darüber befindliche Horizontalachse an, das Zahlenfeld daneben an die Diagonalachse und das linke an den unteren vertikalen Achsenarm.

Die Summen der drei Achsenarme und Zahlenfelder sind ein Wunder der Harmonie: Die zwei Differenzen von links nach rechts betragen einmal 2 mehr und einmal 2 weniger, sodaß sich der Unterschied aufhebt:

 

links-Mitte

sm

Mitte-rechts

sm

Achse

2260-2136

124

2136-2010

126

Feld

9153-8705

448

8705-8259

446

sm

 

572

 

572

572 = 4*11*13

Die Faktoren 4*11*13 geben in multiplikativer Form wieder, was in der Abwandlung 4*(11+13) = 96 einem Teiler der Gesamtsumme 76128 entspricht. Es handelt sich um die Elemente der Raute und des sanduhrförmigen Doppeldreiecks, die vierfach und alternativ die Oberfläche des Oktaeders zusammensetzen:

Die mittlere Zahleneinheit bildet also die Symmetriemitte der beiden nebenstehenden, d.h., letztere betragen das Doppelte.

Die Summe der mittleren Zahleneinheit ist 8705+2136=10841 = 37*293 = FW 330 = 30*11. Die Zahl 37 verweist auf 3+7 Punkte und 37 Elemente der Tetraktys sowie 3*7 Elemente der Doppelraute (DR), die Zahl 293 auf 3 DR-Kreuze, deren Rahmen aus jeweils 29 Elementen besteht:

Die dreifache Summe ist das Zahlenpalindrom 32523 = 3*37*293, das auf die Radialelemente des Tetraktyssterns hinweist:

5 Elemente betreffen den ganzen äußeren Kreis, hier zweimal aufgeteilt in 3+2.

2.      Die Einheit der drei Zahlenfelder besteht darin, daß sie zusammen durch 13 teilbar sind:

 

 

 

 

sm

FW

sm

ZS

9153

8705

8259

26117

68

 

FW

125

1746

2756

4627

668

 

sm

9*8*7*61

30744

736

 

FW

 

 

 

80

33

113

9153 = 81*113; 26117 = 49*13*41

4627 = 7*661; 736 = 23*32

Die Summe 26117 setzt sich aus zwei durch 13 teilbare Zahlen zusammen: 26 = 2*13, 117 = 9*13, zusammen 11*13. Die zweimal auftretende Primzahl 113 ist als eine Kontraktion von 11 und 13 anzusehen. Die Faktoren 7*7*13*41 beziehen sich auf die 13 Punkte des Hexagramms, die sich auf 14 erhöhen, wenn der Mittelpunkt zur Erzeugung eines äußeren Kreises ein zweites Mal verwendet wird:

Auf diese Weise bedeutet 7+7 das trinitarische Kreisflächenverhältnis 1:3. Aus 7*7 = 49 Elementen – ohne Kreiselemente – besteht das Hexagramm. Der FW 80 = 2*(5*8) ist auf die Radialelemente des konzentrischen Doppelkreises zu beziehen und kennzeichnen zweimal 7 Flächeneinheiten. Die 13 Punkte des Hexagramms werden auch durch den Faktor 661 wiedergegeben.

Die Faktoren 9*8*7 sind Komplementärzahlen zu 1 2 3 und haben trinitarische Bedeutung. Die Faktoren der Zahl 123 sind 3*41, die Elemente von drei DR-Kreuzen und dreimal dreier geometrischer Figuren in der Tetraktys und der DR. Der Faktor 61 verweist auf 6+1 Punkte der DR und auf eine doppelte Punktenumerierung des DR-Kreuzes von je 10 Zahlen, woraus sich die Addition 41+20 = 61 ergibt.

Die Einzelziffern der Zahl 736 sind auf 7+3 Tetraktyspunkte und 7+6 Hexagrammpunkte beziehbar, die Umkehrzahlen 23 und 32 auf die Numerierung der 10 Tetraktyspunkte sowie auf die Radialelemente des Hexagramms:

3.      Die Summe der drei Achsenarme 2260+2136+2010 = 6406 ist 3 Zähler unter der nächsten Teilbarkeit durch 13. Die Teilbarkeit durch 13 wird nun für die ganze mittlere Zahleneinheit erreicht, wenn man die Summe 2136 des rechten unteren Diagonalarmes um die 1 des Mittelpunktes auf 2137 erhöht. Die Primzahl 2137 vereinigt 21 Elemente der DR und 37 Elemente der Tetraktys. Die Summe der mittleren Zahleneinheit ist nun 8705+2137 = 10842 = 6*13*139 = FW 157.

Damit die Summen der anderen beiden Zahleneinheiten ebenfalls durch 13 teilbar werden, ist auch ihnen die Mittelpunktszahl 1 hinzuzufügen: 9153+2261=11414 = 2*13*439; 8259+2011 = 10270 = 10*13*79. Die Gesamtsumme beträgt nun 32526 = 18*13*139.

Über die Bedeutung der Primzahl 139 wurde bereits oben gesprochen. Die Einzelziffern des Produkts 6*13 können auf die 10 Punkte der Tetraktys, der Zahl 139 auf die 13 Punkte des Hexagramms bezogen werden. Nun ist folgendes zu bedenken: Durch die Hinzufügung der Mittelpunktszahl besteht eine Zahleneinheit aus 15+7 = 22 Zahlen. Eine DR besteht zwar aus 21 Punkten, zählt man den Mittelpunkt jedoch zweimal, sind es 22. Der hexagonale Anteil der DR ist das Doppeldreieck aus 13 Elementen, durch die Erweiterung kommen 4+4 hinzu. Hexagonaler Kreis und Erweiterungskreis haben das Flächenverhältnis 1:2 oder 1:3, je nachdem ob man nur den Erweiterungsring rechnet oder den ganzen äußeren Kreis. Der zweite Kreisbogen erfordert die nochmalige Verwendung des Mittelpunktes. Daher läßt sich zu den 8 Erweiterungselementen noch der zweite Mittelpunkt hinzudenken:

Den 15+7 Zahlen einer Zahleneinheit entspricht auch der FW 157 der mittleren Summe 10842. Die Einzelziffern dieser schwierigen Zahl lassen sich auf ein unnumeriertes und zwei numerierte Modelle der Tetraktys und des Oktaeders beziehen. Numeriert man nur die Punkte der Tetraktys, ist der Mittelpunkt 5, numeriert man das ganze Hexagramm, ist es die Zahl 7. Dasselbe gilt für das Volumen des Oktaeders, je nachdem ob man die DR-Elemente von 1-4 oder 1-6 numeriert.

Die Zahlen 11 und 13 sind in der Primzahl 113 kontrahiert. Die Summe der Zahlen des vertikalen Achsenarmes und des Zahlenfeldes sind jeweils durch 113 teilbar: 2260:9153 = 113*(20:81) = 113*101 = 11413 = FW 224.

4.      Es bleiben in der unteren linken Ecke die Summen 2396 und 5999 des diagonalen Achsenarmes und des Zahlenfeldes übrig. Sie sind weder allein noch zusammen durch 13 teilbar und lassen sich auch nicht in eine größere Einheit einbinden, die Teilbarkeit durch 13 aufweist. Ihre Bedeutung ist gleich zu untersuchen.

Zur Zahl der 169 Primzahlen sind nun 8 hinzugekommen, 2 Mittelpunkte und 6 Achsenzahlen. Das hängt einerseits damit zusammen, daß vier Achsen Anrecht auf einen Mittelpunkt haben, aber nur einer sichtbar ist, andererseits beide Quadrathälfen Anteil an einer Mittelachse haben. Die beiden Felder, die Anteil am selben rechten horizontalen Achsenarm haben, verbinden also insgesamt 4 Felder zu einer zusammengehörigen Einheit. Ein Hinweis sind die beiden 5-stelligen Summen, die in zwei- und dreistelliger Aufteilung durch 13 teilbar sind: die Gesamtsumme 11713 der einzelnen Zahleneinheit in der oberen Hälfte (27 Zahlen) und die Summe 26117 der drei Felder allein (45 Zahlen). Es wird auf diese Weise eine diagonale Teilung von unten links nach oben rechts erkennbar:

Es stehen sich zweimal je zwei Felder auf beiden Seiten der Diagonale gegenüber, vier horizontal, vier vertikal. Die Diagonale selbst ist geteilt in zwei Zugehörigkeiten von links und rechts.

Der untere linke Achsenarm der Diagonale ist thematisch mit dem Zahlenfeld links von ihm verbunden. Es zeigt sich eine innere Verbindung zwischen den nunmehr 169+8 = 177 = 3*59 Zahlen und den beiden Summen 5999 und 2396:

 

F

A

sm

FW

ZS

5999

2396

8695

101

FW

864

603

1467

169

sm

1467 = 5*163

270

5999 = 7*857; 2396 = 4*599

6895 = 5*23*73

Die FS 1467 vereinigt wieder 14+(6+7) Punkte des Hexagramms in der Bedeutung von 4+3 Flächeneinheiten, 163 zeigt in den Einzelziffer die 10 Tetraktyspunkte.

Die Faktoren 857 und 599 geben beide 4+3 Flächeneinheiten wieder, der erste als 8:5 Radialelemente und 7 Flächeneinheiten, der zweite als (5+9)+9 Durchmesserelemente der Doppelraute:

Die Doppelraute besteht aus 15 Rahmenelementen, aufgeteilt in 1+7+7. Aus 177 Elementen besteht jedoch auch ein numeriertes Achsenkreuz AK9:

Während 7 Kreisflächeneinheiten durch 13 Radialelemente dargestellt werden, sind es (9+5)+9 = 23 Durchmesserelemente. Das könnte der Grund sein, daß die beiden unteren Summen schwerpunktmäßig die Durchmesserelemente vertreten. Aber läßt man von 1467 die Faktoren 7 und 4 weg, erhält man wiederum Teilbarkeit durch 13: 1456 = 8*7*13 mit Hinweis auf die 15 Rahmenelemente der DR. Da nicht nur die beiden Zickzacklinien der DR aus 9 Elementen bestehen, sondern auch der Mittelteil mit 4 Dreiecken, 2 Querlinien und 3 Schnittpunkten, erscheint dreimal die Ziffer 9 in 5999 sinnvoll.

e) Dreiheit und Einheit der göttlichen Personen

1.      Die drei göttlichen Personen verbergen sich also wie ein Vexierbild in drei unteren Feldern mit je einem Achsenarm. Es wurde deutlich, daß die mittlere Figur den Mittelwert der drei äußeren hat. Man wird sie daher der 3. göttlichen Person, der Liebe des Vaters und des Sohnes, zuweisen. Im Hexagon sind die drei göttlichen Personen auf zwei Weisen darstellbar:

In der linken Figur sind drei gleiche Doppeldreiecke erkennbar, in der rechten stehen links und rechts zwei Rautenfiguren aufrecht, sie werden verbunden durch die mittlere Figur. Im vorliegenden Quadrat wird man die erste hexagonale Figurenkonstellation der unteren Hälfte zuordnen, die zweite der oberen.

2.      Das Quadrat mit seinen zweimal 4 Feldern bietet die Möglichkeit, auch die Einheit in der Dreiheit sichtbar werden zu lassen. Im Quadrat ist es das 4. und das 8. Zahlenfeld: Die vier Figuren stehen einander spiegelbildlich gegenüber:

Die drei göttlichen Personen sind farblich gekennzeichnet: blau für die erste, rosa für die dritte, grün für die zweite Person und hellbraun für die Einheit in der Dreiheit.

Die oberen und unteren drei Zahleneinheiten sind jeweils durch 18*13 teilbar: 25506:32526 = 18*13*(109:139) = 234*(109:139) = 234*248 = 144*13*31 = 58032. In den Umkehrfaktoren erweist sich die Vermittlung der dritten Person, denn das einzelne obere Zahlenfeld hat die Summe 6851 = 17*13*31.

Die Einzelziffern der Faktoren 109 und 139 lassen sich auf die 10 Tetraktyspunkte und 13 Hexagrammpunkte beziehen. Die Kombination von 13 und 18 weist auf die 13 Achsenelemente des Hexagons und die 18 Rahmenelemente der Tetraktys hin:

3.      Besondere Aufmerksamkeit verdient der gemeinsame rechte Achsenarm für die zwei rechten Zahleneinheiten: die obere der Einheit in der Dreiheit und die untere der ersten Person. Für die obere ist die Summe 2010, für die untere 2011, zusammen die Primzahl 4021. Die Einzelziffern legen die beiden trinitarischen Kreisflächenverhältnisse 2:1 und 3:1 nahe. Sie zeigen sich bei einer ZW/FW-Verrechnung der Summen beider Zahleneinheiten:

 

 

 

sm

FW

sm

ZS

11713

10270

21983

121

 

FW

83

99

182

22

 

sm

 

 

22165

143

 

FW

 

 

60

24

84

182 = 13*14; 11713 = 10*13*53; 10270 = 13*17*53;

21983 = 13*19*89; 60:24 = 12*(5:2)

22165 = 5*11*13*31 = FW 24:36 = 12*(2:3)

Die Faktoren 13 und 14 der Summe 182 sind auf die Punkte des Hexagramms und seiner zwei konzentrischen Kreise zu beziehen, wie oben schon dargelegt wurde: 13 Punkte bedeuten 3 Flächeneinheiten, 7+7 Punkte 1+3 Flächeneinheiten. 182 ist die Zahlensumme der Aussage SATOR OPERA TENETDer Schöpfer erhält seine Werke.

Die Palindromzahl 121 ist ein Kreissymbol, das die Ewigkeit Gottes besonders veranschaulicht. Sie entsteht, wenn man den Kreisbogen halbiert und mit 1 und 2 numeriert: Die zweite Kreisbogenhälfte kehrt zur 1 zurück:

Die Doppelraute besteht aus zwei Rauten von je 11 Elementen. Durch einen Mittelpunkt wird die Zahl der Elemente auf 21 herabgesetzt. Auch sie ist ein Kreissymbol, da sie durch Verbindung der Endpunkte und im Achsenkreuz mit einer weiteren Doppelraute zum dreidimensionalen Körper des Oktaeders zusammensetzbar ist.

Durch Vereinigung der Endpunkte wird die Zahl der DR-Elemente noch einmal um 1 auf 20 reduziert. Damit wäre der vordere Teil der addierten Achsensumme 4021 erklärt. Der hintere Teil setzt sich aus 10+11 zusammen. Dies könnte durch folgende zwei Punktenumerierungen geschehen:

Die Punkte sind reihum bis zum Ausgangspunkt numeriert. Durch die Vereinigung der Außenpunkte wird eine 10. Position geschaffen. Diese wird unter zwei Gesichtspunkten genützt: Die Zahlen 9 und 10 als Durchmesser- und Radialelemente des Doppelkreises sind konstitutiv für das Dezimalsystem. Nun gibt es nur 9 Grundzahlen, die von 0 ausgehen und in einer Kreisform dorthin zurückkehren. Wenn man mit 1 beginnt, dann steht am Ende die Null. Andererseits ist 10 eine reale Zahl, die die erste Zehnereinheit abschließt und das Weiterzählen möglich macht. In beiden Doppelrauten geht die Numerierung also bis 10. Aber die Zahl 10 besteht aus 2 Stellen. Auf diese Weise kommt die Zahl 10+11 = 21 zustande, und in der Addition 40+21 = 61. 61 ist die ZS des Wortes TENET im SATOR-Quadrat. Aus den Buchstaben des SATOR-Quadrats läßt sich PATER NOSTER bilden, seine ZS ist 143.

Der gemeinsame Achsenarm ist sinnvoll, da die trinitarischen Einheit ihren Ausgang von der 1. Person nimmt.

 

Erstellt: August 2016

Inhalt II